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Run-up of solitary waves 
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A numerical model based on a Lagrangian description has been developed for 
studying run-up of long water waves governed by a set of Boussinesq equations. The 
performance of the numerical scheme has been tested by comparing with analytical 
solutions and experimental data. Simulations of the run-up of solitary waves on 
relatively steep planes (inclination angle > 20') show surface displacements and 
run-up heights in good agreement with experiments. For waves with relatively large 
amplitude the simulations reveal the development of a breaking bore during the 
backwash. Results for run-up heights in converging and diverging channels are also 
presented. 

1. Introduction 
Large water waves generated either by seismic activity, landslides or avalanches 

have in many cases caused deaths and widespread destruction. The tsunami waves 
in the ocean and the destructive waves due to soil or snow slides in lakes or fjords 
are in many cases long waves, and the quasi-hydrostatic shallow-water theory may 
apply. In  these large-scale wave phenomena, viscosity may be of minor importance, 
although the roughness of the sloping bottom may have a significant effect'on the 
run-up. Wave amplification and run-up on sloping beaches have been the subject of 
numerous studies, and a general review can be found in Meyer & Taylor (1972). 
Various analytical solutions for run-up of long nonlinear waves on plane slopes have 
been given by Carrier & Greenspan (1958), Carrier (1966), Shuto (1967), Spielvogel 
(1976), Gjevik & Pedersen (1981) and Helal Badawi (1981). Experimental data on 
run-up of non-breaking waves are given among others by Hall & Watts (1953), Wiegel 
(1964), Kishi & Sacki (1967), Arntsen (1978) and Langsholt (1981). It is found that 
the run-up height is crucially dependent on the wave steepness and the slope of the 
plane. The calculations for the hydrostatic, non-viscous case done by Gjevik & 
Pedersen(1981)indicatedthat,forasolitarywavewithamplitudeAs, K = (A,/h,);cotB 
is the most important parameter for determining the run-up height R,. I n  the 
expression for K ,  6 denotes the inclination angle of the plane and h, the undisturbed 
water depth away from the slope. The ratio R,/A, is a strictly increasing function 
of K .  The limit of R J A ,  when K tends to  0 is 2 and R,/A, is less than 2.1 for K < 0.3. 
For K > 1 the ratio becomes larger than 3. The run-up occurs in a wedge-shaped zone 
without any tendency for wave breaking when AJh, < 0.48 (tan 6)u. For larger 
values of A,/h, the computations indicate that wave breaking may occur during the 
backwash. This breaking criterion was confirmed experimentally by Arntsen (1978) 
and Langsholt (1981). 

The analytical solutions proposed so far for modelling long-wave run-up are based 
on several simplifications, and the effects of these approximations are difficult to 
estimate. For this reason we have applied numerical methods to solve the inviscid 
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nonlinear shallow-water equation including also non-hydrostatic effects, We have 
developed a model for waves propagating along the longitudinal axis of a channel 
of varying cross-sectional area and with a sloping beach a t  the end ($2). Owing to 
the moving free surface the numerical treatment of the shoreline boundary becomes 
difficult in a finite-difference representation based on an Eulerian description. This 
problem may be overcome in various ways - see for example Hibberd & Peregrine 
(1979) in their study of run-up of bores. 

In  this paper we shall use a Lagrangian coordinate description which simplifies the 
numerical treatment of the moving shoreline. I n  order to model nonlinearity, 
dispersion and the boundary conditions properly, we have developed an  implicit 
numerical scheme for this problem ($3). The performance of this scheme has been 
investigated by linear stability analysis and by comparing with the nonlinear 
analytical solutions given by Spielvogel (1976). 

Viscosity will of course always be important a t  the tip of the water wedge and will 
therefore have some effect on the run-up height. As long as the bulk of the water wedge 
is relatively thick compared with the boundary layer, inviscid theory may apply, and 
we therefore expect that  viscosity is of minor importance for relatively steep slopes. 
The good agreement that is found between the numerical simulations and the 
experiments for inclination angles 8 > 20° supports this suggestion ($4). 

2. Basic equations 
We shall derive the equation of motion in Lagrangian description for long gravity 

waves in a channel with a sloping beach a t  the end. Cartesian axes Oxyz are introduced 
with the origin in the undisturbed free surface, Ox directed along the channel, Oy 
across the channel and Oz vertical, as indicated in figure 1 .  The cross-sectional area 
S(x ,  t )  of the channel filled with water is a function of x and time t ,  and the total water 
depth is H(z ,  y, t ) .  It is convenient to  write H = h + q ,  where h = h(x,  y, t )  is the depth 
reckoned from the undisturbed water level and q = q(x,  y, t )  is the displacement of 
the water surface. With h as a function of time we also allow for the possibility that 
the bottom topography may change in time. 

The density p of the water, the acceleration g due to gravity, a typical undisturbed 
depth h, of the water, and a typical wavelength A, are used to introduce a velocity 
scale c, = (gh,)l, a timescale t ,  = A,/c, and a pressure scale p ,  = pc;. We assume that 
h, 4 A, and introduce a small parameter e = (h,/AJ2. The width and the depth of 
the channel are considered to  be of the same order, and the variation of the width 
is of order €4. Hence we define dimensionless variables as follows : 

y* z* 
( x , y , z )  = A, ’ - h, ’ -) h, ’ 

r* 
h, ’ 

t = -  t” H = -  H” p = -  P* q = -  
t ,  ’ h, ’ P, 

where * indicates a dimensional variable, u, u, and w denote the velocity components 
in the x-, y- and z-directions, and p is the pressure. With this scaling, the equation 
of motion, the continuity equation and the condition of irrotational flow can be 
expressed in the form given in Appendix A. By retaining only the terms of order e, 
we obtain the shallow-water approximation 

Du=-r” + EQ,  

DS = -Sax, 
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FIQURE 1. Sketch of channel with symbol definition: (a) plane cut through the 
longitudinal axis of the channel (b). 

where D = a/at + aa/ax, and subscript x denotes differentiation with respect to x. The 
mean velocity u and the mean surface displacement f ,  which are functions of x and 
t only, are defined in Appendix A. The mean values denoted by - and - are 
free-surface average and cross-sectional average respectively. Q represents a first-order 
correction to  the hydrostatic pressure gradient fx. In Appendix A we describe a 
method by which Q can be evaluated for different shapes of the cross-section of the 
channel. For a symmetric rectangular cross-section the mean value f = ?j + 0 ( e 2 ) ,  and 
we find 

Q = -% 3 5  D2b +Q[H(D2H), - H,D2a -+[(HD2?j),- T j ,  D2H] - ?jxD2Tj, (2.3) 

where 2b is the width of the channel. In  (2.3) we have retained the nonlinear terms 
since some of these terms might have an effect on the run-up of strongly nonlinear 
waves. Another reason for keeping the nonlinear form of Q is that  this leads to a 
simpler analytical expression for the solitary wave. The linearized version of Q is 
normally used in the Boussinesq equation. 

It is also possible to evaluate Q for channels with triangular cross-section. Details 
are given in Appendix A. 

For a channel with rectangular cross-section we shall introduce a mean Langrangian 
coordinate defined by x = x(a,  t ) ,  where a is the initial coordinate of the fluid particle. 
Hence 

xt = a, (2.4) 

where subscript t denotes differentiation with respect to time. In Lagrangian 
description of continuity equation (2.2) can be integrated with respect to time, and 
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this leads to Sxa = So, where So is the initial cross-sectional area with the corresponding 
averaged water depth H,. Equation (2.2) can therefore be written in the form 

In order to find the final expression for the equation of motion in Lagrangian 
coordinates we substitute 9 = H - h  in (2.3). This leads to a simpler implementation 
of the shoreline boundary condition. In  general three types of nonlinear terms will 
appear: terms that _ -  are products of velocities (a, q etc.), terms that are products of 
the displacement ( H ,  H ,  etc.), and finally products of velocity and displacement. We 
may expect that the latter terms will be the most important during the run-up, and 
we have therefore neglected terms of the first type. Numerical experiments with 
different forms of Q have justified this assumption and shown that the effect on the 
run-up heights is negligible for the cases reported below (Pedersen 1981). This gives 
the following expression for Q : 

Q = ( ~ H h , , - ~ H h , b , / b - $ b ~ )  DfL-$H(D2H),-~BxD2H. 

This expression is identical with (2.3) if h and b are constant, and therefore gives the 
same solitary-wave solution. 

The fully linearized version of Q is obtained by substituting h for g, h, for B,, 
iftt + h,at for D H  and at for D@ in the last equation. (All partial derivation is done 
with respect to Eulerian coordinates.) Linearizing of DfL and D H  is of no use since 
such terms are automatically linearized by the transformation to Lagrangian 
coordinates. On the contrary, by using the approximation to Q given above, the 
Lagrangian description will be fully consistent with the Eulerian without inclusion 
of awkward and 'un-Langrangian' terms of the form aaa. Hence the equation of 
motion in Langrangian description reads 

$b~+&,--@h, ,  b; (2.6) 
b 

For reasons that will be explained in $3, Ht = q has been kept as an independent 
variable in (2.5) and (2.6). More details concerning the transformation to Lagrangian 
coordinates are given in Appendix B. 

For a rectangular channel of constant width and depth h = 1 the Boussinesq 
equations (2.1) and (2.2) with K defined by (2.3) possess a solitary-wave solution 

i;l = A sech2p(x + ct - xo), (2.7) 
- Ci) 

1 +?'  
a=-- 

where A is the dimensionless amplitude (scaled by hs),  c = ( 1  +A)?,  p = (3A/e)i/2c, 
and x, is the initial position of the wave crest. In  Lagrangian coordinates there is 
of course a corresponding solitary-wave solution to (2.4)-(2.6). This expression is most 
easily obtained by transforming the solution (2.7) and (2.8) to Langrangian coordinates 
(a,t). Details are given by Pedersen (1981). Far away from q, the solitary wave is 
described by the following implicit relation 

4 3  1 A?-f 
c A2 Ai+f' 

--Ia+ct-xoI = 2f---11n- 

where f = ( A  - if)?. For given values of a and t, ?j can be obtained by solving (2.9) 
numerically, and the corresponding mean particle velocity fL can be found from (2.8). 



Run-up of solitary waves 287 

In  the numerical simulations, we generated a shoreward-moving solitary wave by 
specifying the mean horizontal velocity U,(t)  of a horizontally moving wall far away 
from the shoreline. The boundary condition a t  the wall will be 

U = U,(t)  (a  = a,), (2.10) 

where a, is the initial position of the wall and Uw(t) is determined from (2.9) and (2.8). 
At the shoreline we always have 

- 

H = q = 0 (a = as),  (2.11) 

where a, is the initial position of the shoreline. For a rectangular channel the ratio 
S/S ,  is finite provided that H / H ,  is finite. We note that, as long as wave breaking 
does not occur, the ratio R / H ,  is finite even a t  the shoreline where H and H,  are 
both zero. This is easily seen by applying L’H8pital’s rule, which leads to the 
requirement 7, finite and H,, + 0 for a = a,. 

3. Numerical methods 
For convenience we shall drop the overbar for the mean values H a n d  U. The 

equations (2.4)-(2.6) are solvednumerically onaspace-staggeredgrid by asecond-order 
finite-difference scheme which is implicit in space. We denote a space and time 
increments by Aa and At respectively, the numerical approximation to  a variable F 
at  a = j A a ,  t = nAt by FT, and we define the differences a,Fj” = Fj”+l-Fn and 
a, FT = Fjn,, - Fj”. Hence the finite-difference equation corresponding to (2.5) can be 
written 

3 

where HT = Hj” ++Atq?. A similar extrapolation is used for the other variables. The 
predictor value for q?+l, Qj is introduced in order to avoid instabilities in regions with 
large stretching of the fluid elements which may occur a t  the top of the water tongue 
near the shoreline. Similarly the finite-difference equation corresponding to  (2.6) reads 

Eat ur+t = +B(a,H,” + a, HT+’) + At(h,)T+i- C(a,&-a,qj”) -&D(gj+l + gj - qT+l - # ) ,  

where E,  B ,  C and D are the coefficients in (2.6) extrapolated as HT and multiplied 
by appropriate powers of Aa and At. The numerical representation of h,, (h,)z+t, is 
defined by 

(3.2) 

1 
2Ax (h, = ~ [ h (“;+a + AX) - h (xT+& - A x ) ] ,  

where Ax is chosen suitably in order to match the numerical representation of the 
term h, to the first term on the right-hand side of (3.2). I n  the numerical simulation 
reported in this paper Ax = ~(XT+~-XT-’)  with an  appropriate modification at the 
shoreline. From (3.1) and (3.2) we eliminate Hn+l and 4 and solve a tridiagonal set 
for u”+l. Hence Hn+’ can be determined from (3.1). 

The x-values a t  t = (n+  1 )  At are obtained from the kinematic relation (2.4), which 
in finite-difference form reads 

at = &At ( u T !  + u?++). 
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The final values of q are then calculated by 
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Lateral boundary conditions at the shoreline and at the horizontally moving wall are 
ROW easily implemented. The grid is arranged such that the wall is located at the grid 
point where x and .u are specified, and the shoreline is located a t  a grid point for H 
and q. The wall boundary condition (2.10) becomes 

u;+$ = u,(nAt) (a  = aw) ,  

where a, = ( m + i ) A a  is the initial position of the wall. The shoreline boundary 
conditions (2.1 1) read HE = g P  = q; = 0. 

For the linearized equations (2 .4)-(2.6)  with constant width and constant depth h = 1 
the stability and dispersion properties of the numerical 'scheme can be investigated 
by standard meLhods (Meisinger & Arakawa 1976). For a sinusoidal wave with 
wavenumber k and angular frequency w we find the dispersion relation 

sin2 (IfkAa) 
= (gy 1 + (4 +f(At)')  sin2 (&kAa)/(IfAa)' ' 

(3.3) 

It is easily seen that LL) is real for all values of k ,  Aa and At, which implies that  the 
scheme is unconditionally stable. For long waves we get 

= k [ l  -+k2(1 + ~ ( A t ) ' + f ( A ~ ) ' ) ) l + O ( k ~ ) .  

With At and Aa 4 1 ,  the scheme models the dispersion properties for long waves well. 
Figure 2 shows a comparison between phase velocity obtained from (3.3) and the 
phase velocity c = w/'k = ( 1  + &k2)-: obtained by the analytical solution of the 
linearized Boussinesq equations. 

The performance of the scheme in the nonlinear case is checked in two ways. 
Solitary waves are found to propagate with constant speed, amplitude and shape in 
close agreement wit(h analytical results. By retaining only hydrostatic effects in (3.2), 
i.e. C = D = 0, E = 1 and B = - H / H o ,  we may also compare with Spielvogels' (1976) 
analytical results for run-up of nonlinear waves on a sloping plane. The results of the 
comparison are displayed in figure 3. 

For small-amplitude waves propagating along a channel of uniform depth and 
exponentially varying width, i t  is possible to obtain a simple analytical solution to 
(2 .4)-(2.6)  which may be compared with numerical results. We set h = 1 and 
b = bOe--ax, where a is a constant. The linearized form of (2 .5 )  and (2 .6)  is 

Tt = au-u,, Ut = -qa, 
where we have neglected the non-hydrostatic terms and the overbar. These equations 
have solutions 

(u, 7)  = (u0,q0) epa ei(ka+ot), 

where uo, qO, p ,  k and w are constants, p = &a and w = wa = k ( l  +a2/4k2)6.  The 
numerical scheme leads to  a corresponding numerical solution with 

p = & a + + a 3 ( A ~ ) ' . . . ,  

w = 

A stable solution with real w is possible only when +(Aa) a = g(Aa) bx/b < 1. 
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FIGURE 2. Phase velocity c as function of wavelength h = 2n/k. Full drawn lines: (a )  dispersion 
relation for the linearized Boussinesq equations, c = (1 +$Y')-i; (6)  exact dispersion relation for 
linear gravity waves c = (tanhk/k)i; (c) dispersion relation for the linearized KdV equation, 
c = 1 -&k2. Results from the stability analysis of the numerical scheme (3.3): + + + +, 
Aa = At = 0.1; -- - -, Aa = Aa = 0.5. 

-2 
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-1.0 i '  
FIGURE 3. Comparison with Spielvogel's analytical results (full drawn lines). (a )  Initial position of 
water surface. ( b ) ,  (c), ( d )  Subsequent positions of water surface a t  intervals of 1.94 time units. 
Results of numerical simulations: + + + + , Aa = At = 0.1 ; x x x x , Aa = At = 0.5. 
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I n  general the scheme *ill not preserve energy and volume exactly. Typical values 

for change of volume in the simulations reported in this paper are 0.014.1 y&, of the 
total volume transport through a cross-section far away from the shoreline. The 
energy changes are O.Ol-O.l%, of the total energy input by the generation of the 
solitary wave. 

4. Results of the simulations. Comparison with experiments 
Simulations of run-up of solitary waves on an inclined plane have been performed 

with thegeometryshown in figure 1 (b ) .  The first setsofsimulations are two-dimensional 
corresponding to  the wave motion in a channel with rectangular cross-section and 
constant width. As explained previously in $2, the solitary wave is generated by 
prescribing the mean horizontal velocity at a position sufficiently far away from the 
shoreline for the primary run-up and backwash not to be disturbed by reflections from 
the wave generator. I n  view of the appearance of higher-order derivatives of h(x) in 
(2.6), the transition between the flat bottom and the inclined plane was smoothed. 
The smoothing extended over an interval of length 21 centred a t  x = cot 8, where 8 
is the inclination angle of the plane. Hence we defined the water depth by 

h(x) = l- l tanOp(s),  

where p is the polynominal of lowest possible degree that satisfies the boundary 
conditions p ( l ) = p ’ ( l ) =  1, p”( l )=p”’( l )=O and p ( - l )=p’ ( - l )=p” ( -1 )=  
p”’( - 1 )  = 0, namely 

and 9 = (x+cot$)/Z. Numerical experiments with different values of 1 showed that 
with I < 0.25 cot 0 the smoothing had only minor effects (usually less than 0.5 yo) on 
the run-up heights (Pedersen 1981). For very small values of I compared with the 
grid size, local disturbances in the flow field appeared near x = cot8. I n  the 
simulations reported below we have used 1 = 0.25 cot 8. 

Figure 4 ( a )  shows simulated run-up of a solitary wave with amplitude A = 0.3 on 
a plane inclined an angle 20° to  the horizontal direction. The computed surface 
displacement may be compared with the time-lapse photographs (figure 4 b )  of a 
corresponding run-up experiment by Langsholt (1981). 

Langsholt’s experiment was carried out in a 15 m long and 0.5 m wide wave tank. 
A nonlinear single-crested wave was generated by a wavemaker at the end of the tank, 
and measuring probes along the tank showed that the wave developed into a form 
corresponding closely to  a solitary wave except for some distortions a t  the tail. By 
comparing figures 4 ( a )  and 4 ( b )  we see that there is a close agreement between the 
numerical and the experimental results. The experiments show that a steep front 
developed during the backwash (figures 4 b ,  f), which eventually leads to breaking 
(figures 4 b ,  9 ) .  The steepening is reproduced very well by the numerical simulation 
(figures 4a, f ), but the breaking process is of course beyond the scope of the present 
theory. The formation of backwash bores has also been observed in numerical 
simulation of wave run-up by Hibberd & Peregrine (1979). 

Figure 5 (a) shows the simulated run-up of a solitary wave with amplitude A = 0.19 
on a plane inclined at an angle 8 = 30Oto the horizontal direction. I n  order to compare 
these results with experimental data we have performed an  experiment with the same 
experimental set-up as used by Langsholt but with an improved wave generator. This 
led to a wave corresponding more closely to  the solitary-wave form, but there were 
some distortions at the tail. Time-lapse photographs of the run-up are shown in figure 

P ( S )  = &(s6 + 5s4 + 15s’- 16s + 5) 
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5 ( b ) .  As in the previous case, a correct comparison between experiments and 
numerical simulations requires that the position of the peak amplitude of the 
incoming wave (figures 5 b, a )  can be determined very accurately. With the equipment 
we used this is difficult and i t  may introduce an error. A control of the camera also 
showed that the time interval between each photograph varied slightly within the 
range 0.45+0.02 s. A detailed comparison between figures 5 ( a )  and ( b )  shows, 
however, that  within the error limits the agreement is excellent. I n  this case breaking 
was not observed. 

We expect that breaking during backwash occurs for small values of 8 and large 
values of A .  Based on simplified analytical solutions, Gjevik & Pedersen (1981) 
obtained a breaking criterion for solitary waves 

A 2 0.48(tan8)?, 

which was found to correspond well with observations. This criterion indicates that 
for 8 = 20' and 8 = 30' breaking will occur for A B 0.16 and A >, 0.26 respectively, 
which is in good agreement with the experimental and numerical results in figures 
4 and 5 .  

The maximum run-up height R obtained from numerical simulations may also be 
compared with measurements. Hall & Watts (1953) (see Wiegell964) found by a best 
fit to experimental data that R (scaled by h,) depends on the wave amplitude A 

(4.1) 
according to the formula 

R = KAa, 

where K and a are functions of the inclination angle 8. For 8 = 20' this relation is 
depicted in figure 6 with the values of K and a given by Hall & Watts. These results 
are confirmed by the measurements of Langsholt (1981). The numerical simulations 
indeed show that a relation of the form (4.1) exists, but the value K = 3.88 obtained 
numerically is somewhat higher than the value K = 3.48 found experimentally by 
Hall & Watts. 

Figure 7 shows numerical and experimental values of K and a for different values 
of 8. The numerical results compare well with the experimental data for 8 > 20'. The 
discrepancy between the numerical simulations and experiments for smaller values 
of 8 is most likely due to surface tension and frictional effects which are neglected 
in the present theory. Langsholt's data for different water depths show that K 
depends on water depth and that the data for h, = 25 ern are in much better 
agreement with the numerical results than are his data for h, = 15 cm and h, = 10 cm. 
The significant increase in the value of K for water depths between 15 and 25 em 
for 8 < 20' confirms that frictional effects become less important in deep channels. 

Based on the analytical expression for run-up heights given by Gjevik & Pedersen 
(1981), it is possible to estimate the thickness of the viscous boundary layer along 
the plane and compare i t  with the thickness of the water wedge. 

The region close to the tip where the boundary layer is of comparable thickness 
to the water depth is small if the Reynolds number Re = c,h,/v is much larger than 
a certain value Re,. The value of Re, depends in a rather complicated way on wave 
amplitude A and inclination angle 8. A rough estimate for Re, can be found from 
standard theory for turbulent boundary layers. The boundary-layer thickness is 
calculated from the average run-up velocity along the plane deduced from the results 
given by Gjevik & Pedersen (1981). The velocities were assumed to vary slowly enough 
for the steady-state approximation to be used and the effect of the free surface was 
neglected. Re* is defined as the value of Re for which the boundary-layer thickness 
calculated in the above manner is equal to or larger than the total water depth over 
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___.----___.___.________________________------- 

(a) 

FIGURE 4(a). For caption see facing page. 

5 yo of the run-up length. Even though the free-surface effect cannot be neglected close 
to the tip, we believe that Re* a t  least will give some indication of the magnitude 
of Re,. Generally Re* will increase sharply for decreasing values of 8. We find for 
example with A = 0.2, Re* % lo4 for 8 = 20' and Re* N lo5 for 8 = 15'. These rough 
estimates indicate that for water depth h, of about 25 cm (Re = 3 x lo5) frictional 
effects may be of minor importance for 0 > 15'. 

For the same reasons we may expect that  in large-scale experiments or geophysical 
phenomena the run-up heights are in better agreement with the numerical predictions 
even for values of 8 < 15'. 

Propagation of long waves in diverging and converging channels has been studied 
in papers by Miles (1979) and Chang, Melville & Miles (1979). We will briefly report 
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( b  1 

FIGURE 4. (a )  Numerical simulations of run-up of a solitary wave with amplitude A = 0.3 on an 
inclined plane 0 = 20O. (a) - ( f )  surface displacement at time intervals 2.7 time units. (b )  Time-lapse 
photographs of run-up of a solitary wave in ti wave tank. A = 0.3,O = 20°, water depth h, = 0.15 m. 
(a)-(h) a t  time intervals 0.33 s or 2.7 time units. 

some simulations of run-up in channels with varying width. Such simulations may 
be of interest for studies of the propagation of large waves generated by slides or 
avalanches in fjords and lakes. In  the simulations the half-width b(x) of the channel 
was varying in the same way as the depth h(x); b = for x+cot 6 < -1, and 
b = & - (x + cot 6 )  tan @ for x + cot 6 > 1, and smoothed in an analogous way to h in 
the intermediate interval. @ is the angle between the vertical lateral walls and the 
x-direction. Some results for 6 = 15' are displayed in figure 8, which shows that the 
relative change of the run-up R with @ is significant and that there is an asymmetry 
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t 

i 

with respect to positive and negative values of $ i.e. for converging and diverging 
channels. A similar effect was found by Chang et al. (1979) for solitary-wave 
propagation in diverging and converging channels of uniform depth. 

The authors wish to thank Mr Arve Kvalheim and Mr Olav Hinde for helpful 
assistance with the laboratory experiments. 

Appendix A 
The shallow-water equations including non-hydrostatic effects have been derived 

for uniform channels by Peters (1966) and Peregrine (1968). We shall extend this 
theory to the case with varying cross-section. With the notation and scaling 
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FIGURE 5. ( a )  Numerical simulations of run-up of a solitary wave with amplitude A = 0.19 on an 
inclined plane 8 = 3 0 O .  (a) - ( f )  surface displacement at intervals 2.86 time units. (b )  Time-lapse 
photographs of run-up of a solitary wave in a wave tank. A = 0.19, 8 = 30°, water depth 
h, = 0.24 m. (a ) - ( f )  a t  time intervals 0.45 skO.025 s or - 2.86 time units. 

introduced in $ 2 ,  the equation of motion and the continuity equation for an inviscid 
incompressible fluid read 

D,u = -pz ,  eD3v = -py ,  eD3w = -p,- 1, (A 1) 

and u,+v2/+w, = 0, (A 2 )  

where the operator D, = a / a t  + u a/ax + v a/ay + w a/&, and an independent variable 
as subscript denotes differentiation with respect to this variable. Irrotational motion 
implies that uy - €V,  = u, - €W, = v, - wy = 0. (A 3) 
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FIGURE 6. RUII-UP for a solitary wave with amplitude A on a plane inclined an angle 8 = 20". Full 
drawn line shows experimental results by Hall & Watts ( K  = 3.48, a = 1.13); 0,  Langsholt's 
results; f , results of numerical simulations. Dotted line shows best fit to numerical data. ( K  = 3.88, 
OL = 1.14) 

A 

The boundary of the fluid is defined by F(x, y, z ,  t )  = 0 and consists partly of the wall 
of the channel and partly of the free surface of the fluid. Hence the kinematic 
boundary condition can be written 

D,F = 0. (A 4) 

(A 5) 

A t  the free surface z = q(x, y, t )  we have the dynamical condition 

P(X, Y, z = 7, t )  = p,, 

where p, is the pressure over the surface. We define the cross-sectional and the 
free-surface averages of a function f = f(x, y, z ,  t )  by 

where y = b,  and y = b, denote the lateral positions of the shoreline or channel walls. 
By integrating (,4 2) over the cross-section of the channel and using the boundary 

condition (A 4) we obtain DS = - Siiz, (A 6) 

where the operator D is as defined in 32.  From (A 1)-(A 3) we get 

U - ~ Z  = O ( E ) ,  7-+= O ( E ) ,  7-7 = O ( E ) ,  p =P,+~--Z+~(E). (A 7) 
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FIGURE 7 .  Experimental and theoretical (numerical) values of K and a (4.1) for different values 
of 8. Full  drawn lines show experimental results by Hall & Watts; 0 ,  0 and 0, Langsholt's 
experimental data for water depth h = 25 cm, 15 cm and 10 cm respectively; + + + +, results of 
numerical simulations. 

l o  2" 3" rcI 

I 
FIGURE 8. Run-up heights R($)  for solitary waves in diverging (@ < 0) and converging (@ > 0) 
channels (relative to run-up height R(0) in straight channel), @ is the angle between the lateral 
walls and the longitudinal axis of the channel. 8 = 1 5 O ;  __ , A = 0.2; ----, A = 0.1. 
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Equations (A 2)-(A 5 )  and (A 7 )  imply the existence of a potential $ such that 
$u = v+O(s)  and $ z  = w+O(e)  and 

V!$= -- U X  (A 8) 

where V: = a2/ay2 + a2 /az2 .  The kinematic boundary Condition requires that the 
normal derivative 

where 7 = f is substituted for the free-surface part of the boundary. V ,  F denotes 
the gradient vector in the (y,z)-plane. From the third equation of (A 1 )  we obtain 
by integration in the (y, z)plane 

p = p,+.II"-z+e(P,-E)+O(s2),  (A 10) 

where E = Dq5+$(V,$)2, and E, is the value of E a t  the free surface y = f .  The 
constant of integration had been determined from (A 5 )  by averaging. It can be shown 
that u-G = O(e) implies (D,u)-D@ = O(e2). Hence from the first equation of (A 1) 
we find 

where Q = 
It is possible to find explicit solutions of (A 8) with the boundary condition (A 9) 

in special cases. For a channel with a rectangular cross-section defined by b,  < y < b,, 
z > - h  the mean valueQ=f(z = y)+O(s2) and 

DC = - ( j j , ) , - f , + e Q + O ( ~ ~ ) ,  (A 11) 

- 

, (A 12) 
1 D(b,  + b, )  b ,  Db, - b,  Db, 

b ,+b ,  
Y2 + 2 H  H 

where g =  ?j + h. The corresponding expression for K is given in (2.3). 
For a channel with triangular cross-section the expression for $ is (Pedersen, 1981) 

where Hm = h, + f ,  and h, is the maximum depth in the undisturbed state. The slopes 
of the sides may vary in the longitudinal direction of the channel provided the ratio 
of the slopes is constant. The slope of one of the sides is denoted by p ,  and we note 
that the ratio of the slopes does not appear in the expression for $. 

AppendixB 
The Lagrangian description is simplified by the fact that the flow is nearly 

one-dimensional. The only velocity appearing in the equations is the averaged 
horizontal velocity a. Only one Lagrangian coordinate a is therefore needed. The 
definition of a is 

(B 1) 
aa aa 
at ax DU -+a- = 0 ( t  > 0), a(x ,O)  = 0. 

Physically a may be interpreted as some mean initial position of the particles in a 
cross-section of the fluid. From (B 1)  we get a simple but important relation for the 
individual derivative of a function f :  
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Applied to x, (B 2) immediately gives (2.4). Equation (2.2) is transformed to 

s, = -saa/xa. 
This equation may be integrated in time to give 

where S,, is the cross-sectional area at t = 0 and x = a. The more-standard form (B 3) 
is, however, often more suitable for numerical calculations, and (B 4) is therefore used 
mainly to eliminate the factor x, which appears through transformation of x- 
derivatives. The transformation of the equation of motion is straightforward and the 
details are omitted. 
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